Upstream entrainment in numerical simulations of spatially evolving round jets
نویسندگان
چکیده
Direct numerical simulation is used to study the effect of entrainment near the inflow nozzle on spatially evolving round jets. Inflow entrainment is obtained by providing a buffer region upstream of the inflow nozzle. Simulations are performed at Reynolds numbers of 300 (laminar) and 2400 (turbulent), respectively. Simulations without the inflow buffer are contrasted to those with the buffer region. The potential core is seen to close earlier in the presence of inflow entrainment. As a result, near-field turbulent intensities and pressure fluctuations on the jet centerline are noticeably affected. It is suggested that inflow entrainment results in an effective co-flow, whose effect on the volumetric flow rate near the inflow nozzle is appreciable for both laminar and turbulent jets. When plotted in similarity variables, the far-field solutions with and without inflow entrainment agree well with each other, and experiment. The results suggest the importance of allowing for inflow entrainment in simulations of turbulent jets, particularly for studies where near-field behavior is important. © 2004 American Institute of Physics. [DOI: 10.1063/1.1780548]
منابع مشابه
Entrainment Characteristics of Turbulent Round Gas Jets Submerged in Water
The entrainment process in two-phase buoyant jets differs significantly from their singlephase counterparts, and is not well understood. Entrainment models developed for singlephase flow are often used in two-phase jetting simulations, albeit with limited success. In this work, Particle Image Velocimetry (PIV) and shadowgraph flow visualization experiments have been conducted on submerged round...
متن کاملNumerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater
Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard turbulence closure model. This study aims to explore the ability of a time splitting method ...
متن کاملEffect of Expansion and Magnetic Field Configuration on Mass Entrainment of Jets
We investigate the growth of jet plus entrained mass in simulations of supermagnetosonic cylindrical and expanding jets. The entrained mass spatially grows in three stages: from an initially slow spatial rate to a faster rate and finally at a flatter rate. These stages roughly coincide with the similar rates of expansion in simulated radio intensity maps, and also appear related to the growth o...
متن کاملNumerical Study of Interaction of Two Plane Parallel Jets
In the present work, a numerical simulation of two parallel turbulent jets was performed. The simulations were carried out by using the standard, the standard and the RSM models. A parametric study was also presented to determine the effect of the nozzles spacing and velocity ratio on the axial and transverse positions of the merge and combined points. Correlations between the various paramet...
متن کاملOn the flow interactions of multiple jets in cross-flow
Direct numerical simulations have been performed to study the behaviour of multiple square jets issuing normally into a cross-flow. The jets are arranged side-by-side in spanwise direction in twin jet configuration and with addition third jet downstream along the centre line in tandem jets configuration. The simulations are carried out for the jet-to-jet adjacent edge distances of 1D and 2D in ...
متن کامل